<u>MODEL QUESTION PAPER OF MATHEMATICS</u> <u>SEMESTER-I</u>

INTRODUCTION COURSE IN MATHEMATICS

(**IRC** – 1)

Full Marks=75

Pass Marks=30

GROUP:-A (COMPULSORY)

1. (a) Define Tautology.	$1 \times 5 = 5$
(b) Give an example of surjective function which is not inje	ctive.
(c) State Fermat's little theorem.	
(d) Give an example of infinite bounded set.	
(e) Define Limit of a sequence.	
2. Find remainder when 3 ¹⁰⁰ is divided by 5.	(5)
3. Test the convergence of the series whose general term is	
$\sqrt{n^2+1}$ -n.	(5)

GROUP:-B (Answer any four questions) $15 \times 4 = 60$

4. Write truth table of $(p \land q) \lor (\sim r)$.

5. Using Chinese remainder theorem, solve the system of linear Congruence:

 $x \equiv 3 \pmod{11}$ $x \equiv 5 \pmod{19}$ $x \equiv 10 \pmod{29}$

6. Let $A = \{1, 2, 3\}$. List all one-one function from A to A.

7. Find supremum and infimum of the following set:

 $\{1+\frac{1}{2^r}; r \text{ is non-negative integer}\}.$

8. Show that ordered field of rational numbers is not order-complete.

9. Show that the $\{x_n\}$, where $x_1 = 1$ and $x_n = \sqrt{2 + x_{n-1}}$ is convergent and Converges to 2.

10. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

HINTS AND SOLUTIONS

```
1.
```

(a) A statement that is true by necessary or by virtue of logical term.

(b)
$$f = \{(1,2), (2,2), (3,1)\}$$
; $f : A \to A$; $A = \{1,2,3\}$.

(C)
$$a^{n} = a \pmod{p}$$
.
(d) $A = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, \right\}$.
(e) $\lim_{n \to \infty} u_n = l$ iff for every given $\in > 0$, \exists positive integer n_0 such that
 $|u_n - l| < \in \forall n \ge n_0$.
2. $3^{100} = (3^4)^{25}$
 $= (81)^{25}$
 $= (1)^{25} \pmod{5}$
 $= 1(\mod{5})$
 $= 1$.
3. $u_n = \sqrt{n^2 + 1} - n$
Let $v_n = \frac{1}{n}$
then $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{2}$
 $\Rightarrow \sum u_n$ and $\sum v_n$ have same nature.
 $\Rightarrow \sum u_n$ is divergent.

GROUP:-B

4.

р	q	r	$p \wedge q$	~ <i>r</i>	$(p \wedge q) \vee (\sim r)$
Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	F	Т	Т
F	Т	Т	F	F	F
F	Т	F	F	Т	Т
F	F	Т	F	F	F
F	F	F	F	Т	Т

5.
$$m = 11.29.19 = 6061$$

 $x_{1} = 3, x_{2} = 5, x_{3} = 10$ $m_{1} = 11, m_{2} = 19, m_{3} = 29$ $M_{1} = \frac{m}{m_{1}} = 551$ $M_{2} = \frac{m}{m_{2}} = 319$ $M_{3} = \frac{m}{m_{3}} = 209$

Reduced system is

$$551x \equiv 1 \pmod{11}$$

$$319x \equiv 1 \pmod{19}, 209x \equiv 1 \pmod{29}$$

$$\Rightarrow x_1 = 3, x_2 = 5, x_3 = 10$$

$$\Rightarrow \overline{x} = a_1M_1x_1 + a_2M_2x_2 + a_3M_3x_3 \pmod{6061}$$

$$= 3.551.1 + 5.319.14 + 10.209.5$$

$$= 4128 \pmod{6061}$$

$$\Rightarrow \overline{x} = 4128 \pmod{6061}.$$

$$6. \quad f_1 = \{(1,1), (2,2), (3,3)\}$$

$$f_2 = \{(1,1), (2,2), (3,3)\}$$

$$f_3 = \{(1,3), (2,2), (3,1)\}$$

$$f_4 = \{(1,2), (2,1), (3,3)\}$$

$$f_5 = \{(1,2), (2,3), (3,1)\}$$

$$f_6 = \{(1,3), (2,1), (3,2)\}$$

$$7. \sup = 2, \text{ inf } = 1.$$

8. Consider $S = \{x : x \in Q, x \ge 0, x^2 < 2\}$

then it is easy to see that 3 is an upper bound of s.

 \Rightarrow *S* is bounded above.

Next to show that $3 \notin S$.

Next to show that $\sup S = \sqrt{2} \notin S$.

This shows the result.

9.
$$x_1 = 1$$
, $x_2 = \sqrt{2 + x_1} = \sqrt{3}$, $x_3 = \sqrt{2 + x_2} = \sqrt{2 + \sqrt{3}}$
 $\Rightarrow x_1 < x_2 < x_3 < \dots$
 $\Rightarrow \langle x_n \rangle$ is monotonically increasing function.
 $\because x_1 = 1 \le 2$
Let $x_n \le 2$
then $x_{n+1} = \sqrt{2 + x_n} = \sqrt{2 + 2} = \sqrt{4} = 2 \le 2$
 $\Rightarrow x_n \le 2$ $\forall n \in \mathbb{N}$
 $\Rightarrow 2$ is an upper bound of $\{x_n\}$.
 $\Rightarrow \{x_n\}$ converges to its supremum.
Let $\lim_{n \to \infty} x_n = l$
Then $l = \sqrt{2 + l}$
 $\Rightarrow l^2 - l - 2 = 0$
 $\Rightarrow l = 2$ or $l = -1$
 $\because l \neq -1$
 $\therefore l = 2$.
10. $1 + \frac{1}{2} = 1 + \frac{1}{2}$
 $\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

$$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \text{ to } \infty.$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} \text{ is divergent }.$$